PHOTOMETRIC FOLLOW-UP OBSERVATIONS OF OGLE-TR-10

MATTHEW J. HOLMAN
HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Recent projects

- Deep, wide-field searches for irregular satellites of the giant planets
- Deep searches for Kuiper belt objects
- KH15D circumbinary disk system
- Dynamics of dust in disk systems
- Long-term stability of extrasolar planetary systems
- Follow-up observations of extrasolar planetary transits

mholman@cfa.harvard.edu
cfa-www.harvard.edu/~mholman
Motivation

- Radial velocity observations determine
 - Orbital period
 - Eccentricity
 - Argument of periastron
 - $M_p \sin I$
 - Presence of other planets
- Transit observations determine
 - Orbital period
 - R_p/R_*
 - a/R_*
 - Inclination
 - Stellar limb darkening parameters
 - Eccentricity, in some cases
 - Presence of other planets?

Brown et al 2001
Why observe OGLE-TR-10?

- Period established with sufficient accuracy to predict transit times to within an hour (Udalski et al 2001)
- No large amplitude radial velocity variations detected (Konacki et al 2001)
- No spectral evidence of a blend (Konacki et al 2001)
- No evidence of ellipsoidal variability or other out of transit variations (Sirko and Paczynski 2003)

Stellar Characteristics of OGE-TR-10

- $T_{\text{eff}} = 5750 \pm 80 \, \text{K}$
- $\log g = 4.5 \, (3.5-4.6)$
- $[\text{Fe/H}] = 0.0 \pm 0.2$
- $V_{\text{rot}} = 2 \, \text{km/sec} \, (1-4 \, \text{km/sec})$

$M_* = 1.0 \pm 0.05 \, M_{\odot}$

$R_* = 1.0 \pm 0.1 \, R_{\odot}$

\[\frac{R_p}{R_\star} = 0.11 \pm 0.01 \]
\[\frac{a}{R_\star} = 8.3 \pm 0.1 \]
\[i = 90.0 \pm 2 \]

\[\frac{R_p}{R_\star} = 0.09 \pm 0.01 \]
\[\frac{a}{R_\star} = 7.8 \pm 0.5 \]
\[i = 88.2 \pm 2 \]
Observations

- Magellan-II 6.5m telescope at Las Campanas Observatory, Chile
- MagIC, 2kx2k pixels, 4 read amplifiers (one in each corner of the chip), 20 sec read time
- Alternated 30 sec I-band exposures and 60 sec B-band exposures.
- 2 May 2003 UT (full transit), 28 July 2003 UT (partial transit), 31 July 2003 UT (partial transit)
Data Reduction

- Cross talk, overscan, trim, flat field, shutter timing corrections
- Sub-pixel registration of images
 - Creates high signal-to-noise reference image by median combination of 15-20 best images
 - Solves for coefficients of a convolution kernel that matches stellar point-spread-function of reference image to the individual exposures
 - Subtracts transformed reference image from individual images
 - Performs photometry of residuals

Analysis

- Model parameters:
 - $t_c = \text{epoch of transit center}$
 - $T = \text{orbital period}$
 - R_p/R_*
 - a/R_*
 - $i = \text{inclination}$
 - u_1 and $u_2 = \text{quadratic limb darkening parameters}$

Used tools of Mandel and Agol (2002)
Dr. Matt Holman, Harvard (KITP Planet Formation 3-02-04) Follow-Up Photometry of Ogle Candidate Planets

Stellar Limb Darkening

\[I(\mu) = I(1) - u_2(1 - \mu) - u_1(1 - \mu)^2 \]

Mandel and Agol 2002

Charbonneau et al 2003
\[\frac{R_p}{R_\star} = 0.11 \pm 0.01 \]
\[\frac{a}{R_\star} = 8.3 \pm 0.1 \]
\[i = 90.0 \pm 2 \]

\[\frac{R_p}{R_\star} = 0.09 \pm 0.01 \]
\[\frac{a}{R_\star} = 7.8 \pm 0.5 \]
\[i = 88.2 \pm 2 \]
Conclusions

- OGLE-TR-10 appears to be a near-twin of HD209458, although we cannot rule out all possible blend scenarios.
- T = 3.101287 +/- 0.000001 days
- \(t_c = \text{HJD 2452761.8060 +/- 0.0003} \)
- \(a/R_\star = 8.3 +/- 0.1 \)
- \(p = R_p/R_\star = 0.11 +/- 0.01 \)
- \(R_p = 1.1 +/- 0.1 \) R\(_J\)
- \(i = 90 +/- 2 \) deg

Future Work

- Observe OGLE-TR-56 to determine the planetary radius.
- Begin transit timing experiments to place limits on the presence of other perturbers.
- More radial velocity measurements of OGLE-TR-10 to confirm presence of planet.
Perturbations of transit times

\[a_1 = 0.04 \text{ AU}, \ a_2 = 0.09 \text{ AU} \]
\[m_1 = 1 \text{ M}_J, \ m_2 = 1 \text{ M}_J \]

\[a_1 = 0.04 \text{ AU}, \ a_2 = 0.0635 \text{ AU} \]
\[m_1 = 1 \text{ M}_J, \ m_2 = 0.05 \text{ M}_J \]

(See also Bodenheimer et al 2003)