Beyond Standard Model with ATLAS at LHC

Ian Hinchliffe LBNL

January 13, 2004
Many physics studies concentrate on “ultimate” goals.
I will give an indication of what might happen quickly
“Overall, the project’s cost is stable and its schedule unchanged, foreseeing first beam in April 2007 with first collisions following in June.” L. Maiani Dec 19 2003.
Status is updated monthly at
First magnet installed into transfer line December 2003

String Test 2001
LHC operation

- Single Beam operation – April 2007
- Collisions – June 2007
- Operation in “low luminosity mode” for 3 years $2 \times 10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$
- 1 month per year of heavy ion running.
- Full luminosity in $\sim 2010 \ 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$, multiple interactions per crossing cause some degradation in performance e.g. b-tagging.
- Some ATLAS elements have been staged and will not be available at turn-on. Middle layer of pixels, some muon chambers, little impact at low luminosity.
- Trigger/DAQ staging means less rate – impacts b-physics: Could be restored with extra funding.
Atlas–Buildings and location
Surface building – across street from CERN main gate
Above

Below
Last weeks photos

LHC Beam is at A and C

In the center is the support structure for the detector
Overview of ATLAS

ATLAS and CMS are aimed at “new physics”
“Full acceptance” for physics objects, *i.e.* leptons and jets, missing \(E_T \)
Many detector choices driven by specific physics goals (*e.g.* LiAr Calorimeter) Equal response for e and \(\mu \)
Physics performance is expected to be similar to CMS, technology choices are quite different
Magnet system

Solenoid – Central tracking

Muon endcap

Central toroid under assembly
Inner Detector

Pixel Hybrid

Forward Si Strip Module

Forward TRT wheel
LiAr (EM) Calorimeter

Barrel EM

Barrel Cryostat

hadronic end cap
Tile (Hadronic) Calorimeter

Single element

Barrel

Sections in storage
Muons
Characteristic New physics signatures at LHC

Not all present in all models
Heavy objects decay into Standard Model particles with high energy E_T from ν or other new particles
High Multiplicity of large p_T jets
Many isolated leptons – from W, Z or directly produced
Copious b production – “democratic decays?”
Large Higgs production – this may be a standard model particle
Isolated Photons
Quasi-stable charged particles – like a heavy muon.

N.B. Production of heavy objects implies subset these signals
Important for triggering considerations
Backgrounds – Measuring and Calculating

At present, we rely on MC for signal and background estimates. There are uncertainties in rates from PDF’s, higher order QCD. Most of these do no matter at the moment, They will matter once data appears. My concern: underlying and min-bias events. Affects process that need forward jet tagging e.g. WW – scattering or central jet veto. Will be measured once data exists and MC will be tuned to agree...
Little Higgs Models

All data consistent with SM \((g - 2)\)
New particles of mass \(\lesssim 10\text{TeV}\) are constrained EW fits, FCNC limits \(\text{etc}\)
Calculate with a cut off \(\Lambda = 10\text{TeV}\)

top loop \(\delta m_h^2 = \frac{3}{8\pi^2} \lambda^2 t^2 \Lambda^2 \sim (2\text{TeV})^2\)
W/Z loops \(\delta m_h^2 \sim \alpha_w \Lambda^2 \sim -(750\text{GeV})^2\)
Higgs loop \(\delta m_h^2 \sim \frac{\lambda}{16\pi^2} \Lambda^2 \sim -(1.25m_h)^2\)
\(m_h^2 \sim (100\text{GeV})^2\)

Fine tuning of Higgs mass seems to require something else \(\sim 1\text{TeV}\)
Most dangerous terms are top loop, Higgs loop, W/Z loops
Solve these and problem is \(\gtrsim 10\text{TeV}\) where we know nothing
SUSY solves it up to \(\sim M_{\text{Planck}}\) by removing all quadratic divergences.
Can arrange ad-hoc cancellations by adding a few particles but need a symmetry
Little Higgs models (2)

- Models try to arrange new particles to cancel these effects.

- Do this by extending the symmetries of the Standard Model so that the cancellations are forced by the new symmetries – SUSY is best example.

- Need a theory with a broken global symmetry to get a massless Goldstone boson.

- Must break the symmetry “in a small way” so that this Goldstone Boson can have interactions and a VEV and play the role of the Higgs.

- Will solve the hierarchy problem; cancellations will appear as needed.

- The models are not simple (they may be “elegant”) and not complete.

Arkani-Hamed, Georgi, Burdman, Schmalz,
What is the minimal stuff??

- Something to cancel the top loop.
 In the example this is T decays via $T \rightarrow Zt$, $T \rightarrow Wb$, $T \rightarrow ht$ with BR in the proportion $1 : 2 : 1$
 Ratio is test of model

- Something to deal with the W loop
 In the example this is the gauge bosons of the other $SU(2) \times U(1)$.
 Once the masses are specified their couplings have one free parameter (θ)

- Something to deal with the H loop
 In the example here this is the Higgs triplet ϕ which is produced via WW fusion

- Very small effects $< 5\%$ in $h \rightarrow gg$ and $h \rightarrow \gamma\gamma$

Masses and decays are model dependent. Higgs sector is most model dependent
Expected range of masses

- Fine tuning means that $f = \frac{\Lambda}{4\pi} < 1\text{TeV}(\frac{m_H}{200\text{GeV}})^2$
- $m_T < 2\text{TeV}(\frac{m_H}{200\text{GeV}})^2$
- $M_{W_H} < 6\text{TeV}(\frac{m_H}{200\text{GeV}})^2$
- $m_\phi < 10\text{TeV}$
New Quark

Properties determined by two parameters λ_1/λ_2 and mass.

Two production mechanisms $qb \rightarrow q'T$ and $gg \rightarrow T\bar{T}$: Former depends on $t - T$ mixing and therefore on λ_1/λ_2.

![Figure from Han]

Single production dominates at large masses.

Three single production curves are for $\lambda_1/\lambda_2 = 2, 1, 0.5$.

Width is small

Single Production is used in the following: note recoil jet.
Reconstruct from $Z \rightarrow \ell^+\ell^-$ and $t \rightarrow b\ell\nu$

Three isolated leptons (either e or μ) with $p_T > 40$ GeV and $|\eta| < 2.5$ one of which has $p_T > 100$ GeV
No other leptons with $p_T > 15$ GeV
One pair of leptons within 10 GeV of Z mass.
$E_T > 100$ GeV
At least one tagged $b-$ jet with $p_T > 30$ GeV

Background is dominated by tbZ
Reconstruct from $T \rightarrow b\ell\nu$

One isolated lepton (either e or μ) with $p_T > 100$ GeV and $|\eta| < 2.5$
No other leptons with $p_T > 15$ GeV
No more than 2 jets with $p_T > 50$ GeV and $M(j_1, j_2) > 200$ GeV
$E_T > 100$ GeV
at least one tagged $b-$ jet with $p_T > 200$ GeV

Background is dominated by $t\bar{t}$
\[T \rightarrow ht \]

Reconstruct from \(h \rightarrow b\bar{b} \) and \(t \rightarrow b\ell\nu \)

One isolated \(e \) or \(\mu \) with \(p_T > 100 \) GeV and \(|\eta| < 2.5 \).
Three jets with \(p_T > 130 \) GeV.
Four jets with \(p_T > 15 \) GeV.
At least one jet tagged as a \(b \)–jet
Mass of dijet system within 20 GeV of Higgs mass (assumed to be 120 GeV)

Background dominated by \(\bar{t}t \)
New Bosons

Expect two neutral and two charged: Z_H, A_H, W_H^\pm
Model has two additional couplings corresponding to the extra $SU(2) \times U(1)$,

Bosons will be discovered via leptonic decays But critical test is cascades such as $Z_H \to Zh$
New Bosons – Leptonic decays

Clear signal over Drell-Yan background. Plot shows 2 TeV mass for Z_H
New Bosons – Cascade decay $Z_H \rightarrow Zh \rightarrow \ell^+\ell^-b\bar{b}$

Two leptons of opposite charge and same flavor with $p_T > 6(5)$ GeV for muons (electrons) and $|\eta| < 2.5$

The lepton pair should have a mass between 76 and 116 GeV

Two reconstructed $b-jets$ with $p_T > 25$ and $|\eta| < 2.5$, which are within $\Delta R < 1.5$

The b–jet pair should have a mass between 60 and 180 GeV
\[Z_H \rightarrow Zh, \quad h \rightarrow \gamma\gamma \]

Must use all hadronic mode of \(Z \): Cannot distinguish \(W_H \) from \(Z_H \)

Two isolated photons one having \(p_T(1) > 25 \text{ GeV}, \quad p_T(2) > 40 \text{ GeV} \).
\[M(\gamma\gamma) = m_h \pm 2\sigma \]
The jet pair with invariant mass closest to \(M_W \) is selected.
Pair has a combined \(p_T > 200 \text{ GeV} \)

Can also extract signal via Jacobian peak in the \(P_T \) dist of Higgs
ϕ^{++} produced by WW fusion: So must use the forward tagging jets

Two reconstructed positively charged isolated leptons (electrons or muons) with $|\eta| < 2.5$.

One of the leptons was required to have $p_T > 150$ GeV and the other $p_T > 20$ GeV.

$|p_{T1} - p_{Ts}| > 200$ GeV

the difference in pseudorapidity of the two leptons $|\eta_1 - \eta_2| < 2$.

$E_T > 50$ GeV

Two jets each with $p_T > 15$ GeV, with rapidities of opposite sign, separated in rapidity $|\eta_1 - \eta_2| > 5$; one jet has $E > 200$ GeV and the other $E > 100$ GeV.
Summary of sensitivity

- T Observable in both $h(120)t$ (up to mass of 1.2 TeV) and Zt (up to mass 1.0 TeV): Wb is observable up to 1.3 TeV for $\lambda_1/\lambda_2 = 1$

- Z_H observable in e^+e^- to mass of 4.5 TeV for $\cot \theta = 0.5$
 - $Z_H \rightarrow Zh(120) \rightarrow Zb\bar{b}$ observable for mass up to 2 TeV
 - $Z_H \rightarrow Zh(120) \rightarrow Z\gamma\gamma$ observable for masses up to 1.1 TeV

- ϕ^{++} may be observable in W^+W^+ at 1.5 TeV

- More work needed for $m_h \gtrsim 150$ GeV

LHC finds it or motivation disappears
Hadron Production of Sparticles

LHC is likely to be above threshold for many sparticles
A consistent model must be used for simulation. Most popular is SUGRA
Unification all scalar masses (m_0) at GUT scale
Unification all gaugino masses ($m_{1/2}$) at GUT scale
Universal A and B

$|\mu|$ and B are traded off for M_Z and $\tan \beta = v_1/v_2$
So five parameters $\tan \beta = v_1/v_2$ $\text{sign}(\mu)$ A, $m_{1/2}$ and m_0 gives full mass spectrum and decays
Gluino mass strongly correlates with $m_{1/2}$, slepton mass with m_0.

Studies have also been done for Gauge, or Anomaly mediated models.
Enough cases have now been studied that given a complete set of masses and decay rates, we can usually estimate what can be done at LHC.
SUSY in hadron colliders

Inclusive signatures provide evidence up to 2.5 TeV for squarks and gluinos.

Everything is produced at once; squarks and gluinos have largest rates.

Production of Sparticles with only E-W couplings (e.g. sleptons, Higgs) may be dominated by decays not direct production.

Must use a consistent model for simulation: cannot discuss one sparticle in isolation.

Makes studies somewhat complicated and general conclusions difficult to draw.

Studies shown here are not optimized

Large event rates are used to cut hard to get rid of standard model background.

Dominant backgrounds are combinatorial from SUSY events themselves.

Studies shown here are not optimized; large event rates are exploited to cut hard to get rid of standard model background.

Full program difficult to estimate, depends on masses and branching ratios
These studies tend to be conservative

Reach is shown for various inclusive signals
Jets plus missing E_T
Multileptons of same and opposite sign
Shown for SUGRA
Shaded regions excluded by theory or LEP
Extends to gluino masses of over 2 TeV for 10 fb$^{-1}$
Plot shows evolution of reach with luminosity
Notice that a few 0.1fb^{-1} covers most of the
region favored by fine tuning arguments

$\int L \, dt = 1, 10, 100, 300 \, \text{fb}^{-1}$

$A_0 = 0, \tan\beta = 35, m > 0$

$E_T(300 \, \text{fb}^{-1})$

$E_T(100 \, \text{fb}^{-1})$

$E_T(10 \, \text{fb}^{-1})$

$E_T(1 \, \text{fb}^{-1})$

$g(1000) \sim q(1500) \sim g(1500) \sim q(2000) \sim g(2000) \sim q(2500) \sim g(2500) \sim q(3000) \sim g(3000)$

$m_{1/2} \, (\text{GeV})$

$W_h^2 = 0.4$

$W_h^2 = 1$

$W_h^2 = 0.15$

$h(110)$

$h(123)$

E_X

TH

CMS

cosmologically plausible region

Fermilab reach: < 500 GeV

one year @10^{34}

one year @10^{33}

one month @10^{33}

one week @10^{33}

Ian Hinchliffe Santa Barbara Jan 2004
Reach is similar in other models
Example of anomaly mediated model
Shaded pink region is excluded by LEP

In general reach depends mainly on M_g and $M_{\tilde{q}}$ provided $M_{\tilde{\chi}_1} \ll M_g, M_{\tilde{q}}$
rather model independent
Estimating the scale

Select events with at least 4 jets and Missing E_T

A simple variable

$$M_{\text{eff}} = P_{t,1} + P_{t,2} + P_{t,3} + P_{t,4} + E_T$$

At high M_{eff} non-SM signal rises above background note scale
Peak in M_{eff} distribution correlates with SUSY mass scale

$$M_{\text{SUSY}} = \min(M_{\tilde{u}}, M_{\tilde{g}})$$

Will determine gluino/squark masses to $\sim 15\%$ in SUGRA, much poorer in a more general MSSM; 15 parameters were varied

Note that rate information is difficult to use as BR are not known
Must reconstruct decays to get more information
Examples follow
Identifying typical decays

Assume $M_{\tilde{g}} > M_{\tilde{q}}$ (similar results in reverse case)
Then typically

$$B(\tilde{q}_L \to \tilde{\chi}_2^0 q) \sim 1/3, \quad B(\tilde{q}_L \to \tilde{\chi}_1^\pm q') \sim 2/3, \quad B(\tilde{q}_R \to \tilde{\chi}_1^0 q) \sim 1.$$

If channels are open, two body decays such as $\tilde{\chi}_2^0 \to \ell^+\ell^-, \tilde{\chi}_2^0 \to Z\tilde{\chi}_1^0, \tilde{\chi}_2^0 \to h\tilde{\chi}_1^0$ usually dominate
Otherwise $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+\ell^-$ via virtual slepton

So a good idea to look for leptons
Leptonic final states

Isolated leptons indicate presence of t, W, Z, weak gauginos or sleptons

Straightforward case
Decay chain is $\tilde{\chi}_2 \rightarrow \tilde{\ell}^+ \ell^- \rightarrow \tilde{\chi}_1 \ell^+ \ell^-$
- 2 isolated opposite sign leptons; $p_t > 10$ GeV
- ≥ 4 jets; one has $p_t > 100$ GeV, rest $p_t > 50$ GeV
- $E_T > \max(100, 0.2 M_{eff})$

Mass of opposite sign same flavor leptons is constrained by decay

$$M_{\ell\ell} = \sqrt{(M_{\tilde{\chi}_2^0}^2 - M_{\ell}^2)(M_{\ell}^2 - M_{\tilde{\chi}_1^0}^2)/M_{\ell}^2}.$$

Standard Model background is dominated by $t\bar{t}$
Other SUSY events (mainly $\tilde{\chi}_1^\pm$ decays also contribute)
Flavor subtraction remove the SM background and cleans up signal
This example has both $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^+ \tilde{\ell}^-$ and $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$,

Must add jets to this to try to get full decay chains
Squark masses

Attempt to find \(\tilde{q}_L \rightarrow q\tilde{\chi}_2^0 \rightarrow q\ell\ell \rightarrow q\ell\ell\tilde{\chi}_1^0 \)

Identify and measure decay chain
- 2 isolated opposite sign leptons; \(p_t > 10 \text{ GeV} \)
- \(\geq 4 \) jets; one has \(p_t > 100 \text{ GeV} \), rest \(p_t > 50 \text{ GeV} \)
- \(E_T > \max(100, 0.2M_{eff}) \)

Mass of \(q\ell\ell \) system has max at
\[
M_{\ell\ell q}^{\text{max}} = \left[\frac{(M_{\tilde{q}_L}^2 - M_{\tilde{\chi}_2}^0)(M_{\tilde{\chi}_2}^0 - M_{\tilde{\chi}_1}^0)}{M_{\tilde{\chi}_2}^0} \right]^{1/2} = 552.4 \text{ GeV}
\]

...and min at 271 GeV (in the example shown)
smallest mass of possible $\ell\ell$ jet combinations

Kinematic structure clearly seen
Can also exploit ℓ jet mass

largest mass of possible $\ell\ell$ jet combinations
Can now solve for the masses. Note that no model is needed.

Very naive analysis has 4 constraints from $lq, llq_{upper}, llq_{lower}, ll$ masses.

4 Unknowns, $m_{\tilde{d}L}, m_{\tilde{e}R}, m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}$

Errors are 3%, 9%, 6% and 12% respectively.

correlations $m_{\tilde{e}R}$ vs. $m_{\tilde{\chi}^0_1}$

Mass of unobserved LSP is determined.
Errors are strongly correlated and a precise independent determination of one mass reduces the errors on the rest.
What about \tilde{q}_R?

$\tilde{q}_R \tilde{q}_R \rightarrow qq\tilde{\chi}_1^0\tilde{\chi}_1^0$ produces clean events

$$m_{T2}^2(\chi) \equiv \min_{\not{q}_T + \not{q}_T = E_T} \left[\max \left\{ m_T^2(p_T^{(1)}, q_T^{(1)}; \chi), m_T^2(p_T^{(2)}, q_T^{(2)}; \chi) \right\} \right]$$

Event selection

Two jets with $P_T > 150$ GeV

$E_T > 200$ GeV

No other jets with $P_T > 40$ GeV

Clear structure

Determines a combination of M_{q_r} and $M_{\tilde{\chi}_1^0}$
Decays to Higgs

If $\chi_2^0 \to \chi_1^0 h$ exists then this final state followed by $h \to b\bar{b}$ results in discovery of Higgs at LHC.
In these cases $\sim 20\%$ of SUSY events contain $h \to b\bar{b}$

Event selection
- $E_T > 300$ GeV
- ≥ 2 jets with $p_T > 100$ GeV and ≥ 1 with $|\eta| < 2$
- No isolated leptons (suppresses $t\bar{t}$)
- Only 2 b-jets with $p_{T,b} > 55$ GeV and $|\eta| < 2$
- $\Delta R_{b\bar{b}} < 1.0$ (suppresses $t\bar{t}$)
- Clear peak in $b\bar{b}$ mass
- Very small standard model background (pale)
- Dominant background is other SUSY decays (dark)
Generally applicable

This method works over a large region of parameter space in the SUGRA Model.
Hatched region has $S/\sqrt{B} > 5$
Contours show number of reconstructed Higgs Channel is closed at low $m_{1/2}$
Combine with a jet to attempt to get
\(\tilde{q} \rightarrow q\tilde{\chi}_2 \rightarrow q\tilde{\chi}_1 \)

Take \(b\bar{b} \) around the peak and combine with all jets.
Plot the combination with the smallest mass.
Again we see upper kinematic limit.
Preferred regions?

It would be nice to know where to look

If we really believe in minimal SUGRA then WMAP provides strong constraints
Even stronger if $g - 2$ is included (with one value of $R(e^+ e^-)$ at low energy)

Plot from Ellis, Olive
But constraints weaken outside minimal SUGRA

$R = M_2/M_3$ at GUT scale.

Plot from Birkdahl-Hansen etal
Extra Dimensions

Many theories (e.g. string) predict extra dimensions of size R

What is R? Old ideas ⇒ $1/M_P$. Unobservable.

Larger value of R can allow scale of Gravity to be smaller

$$G_N = 8\pi R^\delta M_D^{-(2+\delta)}$$

$M_D \sim 1$ TeV $R \sim 10^{32/\delta-16}$ mm

m Attractive because no hierarchy between M_W and M_D

But hierarchy between $1/R$ and M_W still exists

Compactified dimension implies tower of states with $\Delta m \sim 1/R$

⇒ Standard Model fields must be stuck in $d = 4$ But many graviton (G) excitations can exist.

In simplest models processes such as $qg \rightarrow qG$ or $q\bar{q} \rightarrow \gamma G$ give missing energy signatures or distortions in rates due to exchanges

Arkani-Hamed...
Studies have focused on jets + E_T, $\gamma + E_T$, $\gamma\gamma$, and $\ell\ell$ final states. Virtual effects from graviton exchange show up as excesses in the production rates.

$\gamma\gamma$ Events/GeV/10 fb$^{-1}$

Sensitivity for 10 and 100 fb$^{-1}$
ADD extra dimensions produce jets + E_T, $\gamma + E_T$ signals from graviton emission

$$\delta = 2, \ M_D = 7 \ TeV \quad \sqrt{s} = 14 \ TeV$$

red region is signal from jets for 100 fb$^{-1}$

Sensitivity

<table>
<thead>
<tr>
<th>δ</th>
<th>M_D^{max} (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
Model of 5-dim space with two branes of 4-dim. SM fields are stuck on one brane. Metric is “non-factorizible”

\[ds^2 = e^{-kR\phi} \eta_{\mu,\nu} dx^\mu dx^\nu + R^2 d\phi^2 \]

Scale \(\Lambda = ke^{-kR\pi} \) in 4-D world

Can get \(\Lambda \sim 1 \text{ TeV} \) with \(Rk \sim 12 \) and \(k \sim M_P \)

Graviton excited states have mass gaps of order \(\Lambda \)

Properties are determined by \(k/M_P \).

Simple models have \(k/M_P \sim 0.01 \); excited states are then narrow and weakly coupled
Look for a resonance in dilepton final states, e.g. $gg \rightarrow e^+e^-$ Discovery limit is $1.8\, TeV$ for $100\, fb^{-1}$
Resonance is Spin-2, confirm this by looking at lepton angular distribution
Can determine spin properties for $M < 1.4 TeV$ for 100 fb$^{-1}$
Can also have standard model fields in extra dim.

Excitations of SM particles

Insufficient reach to see second resonance
Conclusions

• We are 42 Months from first data

• Much work remains in completing and commissioning hardware and software

• Set of ongoing data challenges to test out software, Physics readiness document in 2006 – updates to Physics TDR (1999).

• Full capability of defector requires restoring staged components – vital for full luminosity operation and some physics (\(b\)-physics)

• Serious thinking has started about what might be done at \(10^{35}\) and what machine and detector upgrades are needed.