Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Collaborators:
Ehud Altman, Erez Berg, Technion

Outline

1. Renormalization and Effective Hamiltonians
2. Contractor Renormalization
3. 2-D Hubbard \Rightarrow Plaquette Boson-Fermion Model
4. Quantum Frustration: Checkerboard and Pyrochlore lattices

References:
Cuprates:

Pyrochlores: E. Berg, E. Altman and A. Auerbach, cond-mat/0206384; PRL submitted.
The Cuprate Problem

Effective Hamiltonian which includes:

1. Tightly bound d-wave pairs
2. Antiferromagnetic correlations

Can we get this from a strong repulsively interacting electrons model?

Problem: Quantum Frustration

\[H = J \sum_{\langle ij \rangle} S_i \cdot S_j = J \sum_{\text{tet}} S_{\text{tet}}^2 + \text{const} \]

Pyrochlore Checkerboard

Extensive number (N/2) degrees of freedom in classical GS manifold

Spinwave theory is poorly controlled
Highly frustrated magnets

\[H = J \sum_{\langle ij \rangle} S_i \cdot S_j \]

\[H_{\text{eff}} = ? \]

Strong Quantum fluctuations (spin-\(1/2\))?

Spin-\(1/2\) Checkerboard Antiferromagnet

Exact diagonalization
(\text{Palmer and Chalker, 2001})

How to describe ground state and low energy singlets?
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

k-Space Renormalization (Shankar)

Eliminate high momenta single particle states

\[Z_{micro} = \int D^2 \bar{z} \exp\left(-\int d\tau \bar{z} \partial_\tau z - H(\bar{z}, z)\right) = \int D^2 \bar{z}_{k<K'} \exp(-S(\bar{\tau}'), \tau)] \]

\[S_{K'} \approx \sum_{k<K'} \left(i\omega - \epsilon_k - \Sigma(k, \omega)\right) \bar{z}_k z_k - \int \bar{z}_k \bar{z}_{k'} \bar{z}_{k''} \bar{z}_{k+k'-k''} + \ldots \]

"Effective Hamiltonian"

Renormalization group: \(S(K) \rightarrow S(K') \)

Couplings flow: \(f(K), \Sigma(K) \)

Provision: \(S(K') \) should be similar to \(S(K) \)

Renormalization by Canonical Transformation

\[H = -t \sum_{ij} c_i^+ c_j + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

Schrieffer-Wolff ->

\[H^{eff} \approx \frac{4t^2}{U} \sum_{ij} S_i \cdot S_j + O(t/U, E/U) \]

Advantages

1. Reduced Hilbert Space \(\mathcal{S} = \{ c_i^+ \bar{\sigma}_{j\nu} c_{j\nu} \} \)
2. Bosonic degrees of freedom
3. Better mean field approximations for Heisenberg than for the Hubbard Model

Problems:

1. Pertubative limit of \((t/U)\ll 1\)
2. \(H(E) \) is not really a Hamiltonian

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Direct Numerical Correlations

Need $L > \xi_{\text{correlation}}$

\[\text{Simulation time is } \approx \exp\left(L^d \right) \]

If ξ is large, it is futile to try to extract thermodynamic correlations

What are numerics good for?

Emerging Low Energy Degrees of Freedom

GeV quarks&leptons MeV nucleons eV atoms 0.1 eV chemical bonds

The Captain's Weight

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Numerical Renormalization

Need only $L > \xi_{\text{coherence}}$!

$\xi_{\text{coherence}} = \text{size of “atoms”}$

How do we identify “atoms” and calculate effective couplings??

Contractor Renormalization (CORE)

Morningstar-Weinstein, PRD (1996)

Step I: Divide lattice to disjoint blocks

Truncate:

$N \rightarrow M$ lowest states per block $\{ |\phi_i \rangle \}_{i=1}^M$

“atoms”
Step II: H^{ren} for a particular cluster of N blocks

Reduced Hilbert space: $|\alpha\rangle = |\phi_1, \phi_2, \ldots, \phi_N\rangle$ (dim = M^N)

3. Orthonormalize from ground state up. (Gramm-Schmidt)

$$\varepsilon_n, |n\rangle, \sum P_\alpha |n\rangle \rightarrow |\psi_n\rangle$$

$$H^{ren}_{(1,\ldots,N)} \equiv \sum_{n=1}^{M^N} \varepsilon_n |\tilde{\psi}_n\rangle \langle \tilde{\psi}_n|$$

$$h_{(1,\ldots,N)} \equiv H^{ren}_{(1,\ldots,N)} - \sum_{i_1,\ldots,i_L} h_{i_1,\ldots,i_L}^{conn, subclus}.$$
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Test: 1D Heisenberg

\[JS_i \cdot S_{i+1} \rightarrow E_0 / N = \sum_r h_0^r \]

C.J. Morningstar & M. Weinstein hep-lat/000202

<table>
<thead>
<tr>
<th>Range (size)</th>
<th>Energy Density</th>
<th>CIRE</th>
<th>Padé [N/M]</th>
<th>Energy Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (2)</td>
<td>-0.257009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (4)</td>
<td>-0.4330327</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (6)</td>
<td>-0.438759</td>
<td>[1/1]</td>
<td>-0.4426182</td>
<td></td>
</tr>
<tr>
<td>4 (8)</td>
<td>-0.4400777</td>
<td>[1/1]</td>
<td>-0.4431005</td>
<td></td>
</tr>
<tr>
<td>5 (10)</td>
<td>-0.44132130</td>
<td>[2/2]</td>
<td>-0.4431387</td>
<td></td>
</tr>
<tr>
<td>6 (12)</td>
<td>-0.44102771</td>
<td>[3/3]</td>
<td>-0.4431412</td>
<td>-0.4431412</td>
</tr>
</tbody>
</table>

Hubbard Plaquette States

0 holes 1 hole 2 holes

<table>
<thead>
<tr>
<th>(π,π) Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(π,π) D-wave hole pair</td>
</tr>
</tbody>
</table>

AFmagnet and Superconductor degrees of freedom!
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Coupling Plaquettes (CORE)

"Plaquette Boson Fermion Model of Cuprates"

Coupling plaquettes: Failure of perturbative approach

Pair hopping: \(J_C \propto \frac{t'^2}{\Delta_b} \)
Fails for \(t' > \Delta_b \)

Energy of 2 holes on the cluster

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Good convergence of the cluster expansion!

\[\frac{\langle h_{ijk} \rangle}{\langle h_{ij} \rangle} \sim 10^{-1} - 10^{-2} \]

\[H_{\text{approx}} \]

\[H_{(1,2,3)} \]

\[\downarrow \]

Short coherence length!

S.H. Pan et al (PRL 00)

Pairs keep their integrity on the full lattice!!

Pair Integrity

Pair correlations in t-J model by DMRG (White & Scalapino)

Hole pairs stay tightly bound in larger clusters

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Four Boson Model

\[\mathcal{H}^b = (\epsilon_b - 2\mu) \sum_i b_i^\dagger b_i - J_b \sum_{\langle ij \rangle} (b_i^\dagger b_j + \text{H.c.}) \]

\[\mathcal{H}^t = \epsilon_t \sum_{i\alpha} t_{i\alpha}^\dagger t_{i\alpha}^\dagger - J_t \sum_{\alpha(\alpha\beta)} (t_{\alpha\beta}^\dagger t_{\alpha\beta} + \text{H.c.}) - \frac{J_H}{2} \sum_{\alpha(\alpha\beta)} (t_{\alpha\beta}^\dagger t_{\alpha\beta} + \text{H.c.}) \]

Projected SO(5) Theory
S-C Zhang, J.P. Hu, E. Arrigoni, W. Hanke, A. Auerbach, PRB60, (99)

Numerics:
Dorneich, Hanke, Arrigoni, Troyer, Zhang, (02)

Similar scale for pair and magnon hopping!

Small superfluid density

\[H = \frac{1}{2} \rho \int d^2 x \left(\nabla^2 + iA \right) \rho \]

Ginzburg-Landau

\[\rho_c \propto \frac{1}{\lambda^2} \]

Uemura’s Plot (89)

BCS

\[\rho_c = \frac{\hbar^2 n_e^2}{2m} \approx \epsilon_r \approx kT \]

\[T_c = \frac{\hbar}{m} e^{-\lambda} = 10^3 \text{eV} \]

\[n_e = \frac{\gamma}{\omega_c} \]

\(T_c, \rho_c, n_e \) unrelated

BEC of real-space pairs
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Plaquetized Lattice?

\[x = 0.125 \]

\[Q = (\frac{\pi}{4}, 0) + (0, \frac{\pi}{4}) \]

\[\langle b_r \rangle \propto e^{iQr} \]

Stripes,

or Plaquetized order parameter?

Back to the Pyrochlores:

Goal: \(H_{\text{eff}} \) in terms of lowest tetrahedron states
Tetrahedron eigenstates

\[H(\begin{array}{c}
\circ
\end{array}) = JS_{\text{tot}}^2 + c \]

Effective Hamiltonian

\[H_{\text{eff}} = \sum_i h_i(\begin{array}{c}
\circ
\end{array}) + \sum_j h_j \left\{ \begin{array}{c}
\circ
\end{array} \right\} \]

\[\Rightarrow H_{\text{eff}} = -J_1 \sum_{\langle ij \rangle} (\vec{S}_i \cdot \hat{\Omega}_{ij}) \left(\vec{S}_j \cdot \hat{\Omega}_{ij} \right) - h_1 \sum_i S_i^z \]

\[J_1 \approx J/2 \]

\[h_1 \approx J/4 \]

\[\hat{\Omega}_{\text{Vertical}} = \leftarrow \quad \hat{\Omega}_{\text{Horizontal}} = \rightarrow \]
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Mean Field solution

- Energy per plaquette as a function of \(\theta/\pi \)
- Direction of pseudospins

Thermodynamics

- Crossed plaquettes are symmetric with respect to the degenerate ground states!
- Singlet Excitations
- Ising Domain walls
- Palmer and Chalker (2001)
- Spin flip excitation energy \(\sim J/2 \)
- Number of low singlet excitations grows linearly with size

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Quantum Pyrochlore Antiferromagnet

No MF order down to zero temperature!

Villain (79);
Moessner and Chalker (98);

Spectrum of a finite cluster of the spin-\(1/2\) Pyrochlore

First CORE Step

First stage: Tetrahedral clustering

Pseudospins defined on a FCC lattice

Effective 3-body hamiltonian

\[
H_{\text{eff}} \approx J_3 \sum_{\langle i,j,k \rangle} \left(\frac{1}{2} + \vec{S}_i \cdot \vec{e}_{ijk} \right) \left(\frac{1}{2} + \vec{S}_j \cdot \vec{e}_{ijk} \right) \left(\frac{1}{2} + \vec{S}_k \cdot \vec{e}_{ijk} \right)
\]

Perturbative Expansion: Harris, Berlinsky, Bruder (92)

MF level: four sublattice “Order”

Remaining macroscopic degeneracy!
Second CORE step

Second stage: “Super Tetrahedral” clustering

Basic block: “supertetrahedron”

Spectrum of a single block:

- Pseudospin - ½

Mean Field Solution

\[H_{\text{eff}} = J \sum_{\langle ij \rangle} (\hat{S}_i \cdot \hat{c}_{ij})(\hat{S}_j \cdot \hat{c}_{ij}) + J_b \sum_{\langle ij \rangle} (\hat{S}_i \cdot \hat{c}_{ij})(\hat{S}_j \cdot \hat{c}_{ij}) + \ldots \]

Mean field ground state:

Supertetrahedron pseudospins

- Ground state: 6 fold degeneracy, rotational and translational symmetry breaking
- Coherence length: ~ single supertetrahedron
- Domain wall excitations
Summary

1. CORE renormalizes a microscopic Hamiltonian to an effective Hamiltonian, non perturbatively.

2. The truncation error can be controlled by a short coherence length ("atom size").

3. Applying CORE to the Hubbard Model yields an effective Plaquette Boson Fermion Model.

4. Applying CORE to the Pyrochlore yields a lattice symmetry breaking ground state and very low lying singlet excitations.

Future:
Development of larger scale CORE computations (S. Capponi)
Explore the PBFM.
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Pair Binding on a Plaquette

\[\Delta \equiv E_2 - 2E_3 + E_4 < 0 \]

Pair binding was found for Hubbard and t-J clusters close to half filling!

(Hirsch et al., Fye et al. 89.)

Is this the Pairing Mechanism? \(U/t \)

Test: Tight Binding models

2D

![Diagram](image-url)
Fermion holes

\(\mathcal{H}_{\text{fermion holes}} = \sum_{k_x} (\varepsilon_k^f - \mu) \hat{f}_{k_x \uparrow} \hat{f}_{k_x \downarrow} \)

\(\varepsilon_k^f = t' \left(\cos k_x + \cos k_y \right) + t' \left(\cos k_x - \cos k_y \right) \)

Plaquette fermions

Non Interacting, Tight Binding
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Fig. 4(color). Full Brillouin zone plots of $\Delta n_k/\Delta T$ for the t-J model. The color scale is the same for both plots. Orange, yellow, and green are negative, with a minimum value of $\Delta n_k/\Delta T = -0.08J^{-1}$. Blue, violet, and red are positive, with a maximum value of $\Delta n_k/\Delta T = 0.15J^{-1}$. The plots correspond to different temperatures; left: $T = 0.5J$; right: $T = 0.3J$. In the right plot the solid curve is the $T = 0$ tight-

Plaquette Boson – Fermion Model

$$H^{PBFM} = H^{bosons} + H^{fermions} + H^{bf}$$

$$\mathcal{H}^{bf} = g_b \sum_{k,q} (d_{k+q/2}^\dagger b_q f_k f_{-k+q} + H.c.)$$

STM Differential Conductance (nS)

In vortex out of vortex

Hole fermions at $q = (\pm \pi, \pm \pi)$

$S.H. Pan et al. (PRL 00)$

Pseudogap

$$\Delta_{pg} = E_{k^*} - \mu(x,T)$$

$$\mu(x) - \mu(0) = \frac{x}{2k_x + k_y}$$

Superconducting gap

$$\Delta^s = g_s \langle b \rangle$$

$$E_i = \sqrt{(\epsilon_i - \mu) + (\Delta^s)^2}$$

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Numerical support

Static and dynamical properties of doped Hubbard clusters

E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera

4X4 cluster

- Holes in pockets
- 3 pairs in a condensate
- Pair condensate

The problem of Two Gaps

Pseudogap **decreases** with doping (measures chemical potential)

\[
\mu(x) - \mu(0) = \frac{x}{(2k_x + k_y)}
\]

\[
\Delta_{kg}^{\text{pg}} \equiv E_{k_T} - \mu(x, T)
\]

Coherence gap **increases** with doping (measures hole pairs order parameter)

\[
\Delta_{kg}^{\text{SC}} = g_d \langle \Phi \rangle
\]

Prediction: \(\Delta_{SC} \propto \sqrt{T_C}\)
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

Short coherence length

\[\xi \sim 20 \text{ Å} \sim 5a \]

Phase diagram (Monte Carlo)

Phase diagram and dynamics of the projected SO(5)-symmetric model of high-\(T_c\) superconductivity

A. Doniach1, W. Haule1, E. Arrigoni1, M. Troyer2 and S.C. Zhang3

Dispersion of the \((\pi, \pi)\) triplet

Experiment

Uemura3 plot

Dr. Assa Auerbach, Technion (KITP Correlated Electron Materials 8/23/02)
Contractor Renormalization for the 2D Hubbard and Frustrated Heisenberg Models

\[h_{ijk} \approx J_3 \left(\frac{1}{2} + \vec{S}_j \cdot \vec{e}_{jk} \right) \left(\frac{1}{2} + \vec{S}_j \cdot \vec{e}_{jk} \right) \left(\frac{1}{2} + \vec{S}_k \cdot \vec{e}_{jk} \right) \]