Neuronal Signals, Granger Causality and Time Series Analysis

A. E. Brockwell
Dept. of Statistics
Carnegie Mellon University
abrock@stat.cmu.edu
A Problem

Problem: Given a set of time series associated with objects, determine which components are driving other components.

Neurons could be replaced with other objects.
Problem: Given a set of time series associated with objects, determine which components are driving other components.

Neurons could be replaced with other objects.
Causality

It’s tempting to say

“Neuron #1 has a causal effect on Neuron #2”

This is fundamentally problematic.
Granger Causality

“Granger causality” is not a new idea

Granger Causality: Defn

Definitions:

\[P(Y_t|A) = \text{unbiased min. var. predictor of } Y_t \text{ given info in } A \text{ at times } \leq t \]

\[\epsilon(Y_t|A) = Y_t - P(Y_t|A) \]

\[\sigma^2(Y_t|A) = \text{Var}(\epsilon(Y_t|A)) \]

\[U = \text{all information available in the universe} \]

We say \(\{X_t\} \) “Granger causes” \(\{Y_t\} \) if

\[\sigma^2(Y_t|U) < \sigma^2(Y_t|U \setminus X). \]
In practice, we can’t take into account all the information in U.

So replace U by \{all measured processes\}.

An Index: We can define a *Granger Causality Index* by

$$GC\text{I}(X, Y) = 1 - \frac{\sigma^2(Y_t|U)}{\sigma^2(Y_t|U \setminus X)}$$
Granger Causality in Practice

Procedure:

1. Fit full multivariate time series model to all processes.
2. Fit sub-models, leaving out one process at a time.
3. Carry out model diagnostic tests.
4. Compute indices.
2-Neuron Example: Suppose 2 neurons have firing rates M_t and N_t, satisfying the VAR(1) ("vector autoregression of 1st order") equation

$$
\begin{bmatrix}
M_t \\
N_t
\end{bmatrix} =
\begin{bmatrix}
0.5 & 0.5 \\
0 & 0.5
\end{bmatrix}
\begin{bmatrix}
M_{t-1} \\
N_{t-1}
\end{bmatrix} +
\begin{bmatrix}
Z_{t}^{(1)} \\
Z_{t}^{(2)}
\end{bmatrix},
$$

where

$$
\begin{bmatrix}
Z_{t}^{(1)} \\
Z_{t}^{(2)}
\end{bmatrix} \sim \mathcal{N}(0, I_{2\times2}).
$$

Note: This model doesn’t allow for instantaneous Granger causal relationships.
The VAR(1) has marginal models

\[M_t = 0.6M_{t-1} + V_t, \quad \{V_t\} \sim N(0, 1.3) \]

\[N_t = 0.5N_{t-1} + W_t, \quad \{W_t\} \sim N(0, 1) \]

(These could be calculated theoretically, or simply fit to observed data.)
\[P(N_t|U) = 0.5N_{t-1} \]
\[\epsilon(N_t|U) = Z_t^{(2)} \]
\[\sigma^2(N_t|U) = \text{Var}(Z_t^{(2)}) = 1 \]

\[P(N_t|U \setminus M) = 0.5N_{t-1} \]
\[\epsilon(N_t|U \setminus M) = W_t \]
\[\sigma^2(N_t|U \setminus M) = \text{Var}(W_t) = 1 \]

So

\[\text{GCI}(M, N) = 1 - \frac{1}{1} = 0. \]
\[GCI(N, M) \]

\[
\begin{align*}
 P(M_t|U) &= 0.5M_{t-1} + 0.5N_{t-1} \\
 \epsilon(M_t|U) &= Z_t^{(1)} \\
 \sigma^2(M_t|U) &= \text{Var}(Z_t^{(1)}) = 1 \\
\end{align*}
\]

\[
\begin{align*}
 P(M_t|U \setminus N) &= 0.6M_{t-1} \\
 \epsilon(M_t|U \setminus N) &= V_t \\
 \sigma^2(M_t|U \setminus N) &= \text{Var}(V_t) = 1.3 \\
\end{align*}
\]

So

\[
GCI(N, M) = 1 - \frac{1}{1.3} \approx 0.23.
\]
Fitting a VAR Model

Goal: Given K time series $\{N_t^{(j)}\}$, $j = 1, 2, \ldots, K$, find a model of the form

$$N_t = \Phi_1 N_{t-1} + \Phi_2 N_{t-2} + \ldots + \Phi_p N_{t-p} + \epsilon_t,$$

where $N_t = (N_t^{(1)}, \ldots, N_t^{(K)})^T$ and Φ_j is a $K \times K$ matrix, and $\epsilon_t \sim N(0, \Sigma)$.
1. Compute sample cross-correlations and match with theoretical cross-correlations for model.

2. Compute cross-spectra and apply a spectral analog of the above procedure.

3. Cast the model as a \textit{state-space model} and use the Kalman filter to compute likelihood as a function of parameters. Maximize over parameters.
A Useful Modification

Bivariate VAR(1):

\[N_t^{(1)} = \phi_{11} N_{t-1}^{(1)} + \phi_{12} N_{t-1}^{(2)} + \epsilon_t^{(1)} \]

\[N_t^{(2)} = \phi_{21} N_{t-1}^{(1)} + \phi_{22} N_{t-1}^{(2)} + \epsilon_t^{(2)}. \]
A Useful Modification

Bivariate VAR(1): Simultaneous Dep.

\[
N_{t}^{(1)} = \alpha_{12} N_{t}^{(2)} + \phi_{11} N_{t-1}^{(1)} + \phi_{12} N_{t-1}^{(2)} + \epsilon_{t}^{(1)}
\]

\[
N_{t}^{(2)} = \alpha_{21} N_{t}^{(1)} + \phi_{21} N_{t-1}^{(1)} + \phi_{22} N_{t-1}^{(2)} + \epsilon_{t}^{(2)}.
\]

Crude method for fitting:

Use previously-mentioned methods, shifting time series by one time unit.
Simulation Study

Neuron #1: Rate = 20 Hz
Neuron #2: Rate = 20 Hz + 300λ_{12}
Neuron #3: Rate = 20 Hz + 300λ_{13} + 150λ_{23}
Simulation Time Unit = 0.0001 seconds.
Total Time Simulated = 10 seconds.

Data is binned into 5ms bins.
Binned Data

Neuron #1

Neuron #2

Neuron #3
Results - Allowing Simultaneous Dependence

N #1 -- 0.06 - N #2

N #1 -- 0.08 - N #3

N #3 -- 0.11 - N #2

N #3 -- 0.05 - N #2

N #3 -- 0.04 - N #1
Results - No Simultaneous Dependence
The VAR model is *linear*.

Standard estimation procedures for VAR either implicitly or explicitly assume ϵ_t is *Gaussian*.

These assumptions are often unrealistic.
Something Better?

For modeling binned spike counts, perhaps

$$
\{X_t^{(1)}, X_t^{(2)}, X_t^{(3)}\} \sim \text{VAR}
$$

$$
N_t^{(j)} \sim \text{Poisson}\left(\exp(X_t^{(j)})\right)
$$

would be more realistic. ($\{X_t\}$ is a hidden process.)

This is an example of a **generalized state-space model**.

Techniques are being developed for handling these kinds of models.
Additional Comments

- It’s safer to use the term “Granger causality” than “causality”.
- Results depend on your definition of the “universe”. For optimal results, you should measure as much as possible.
- Results may also depend on sampling period.
- Model-fitting is critical. Hence diagnostics are important.